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Estimation of critical points of branched polymers

Kazumi Suematsu and Minoru Kohno
Kohno Clinical Medicine Research Institute, Tomitahama 26-14, Yokkaichi, Mie 512, Japan

~Received 13 July 1999; revised manuscript received 25 May 2000!

The authors’ theory of the gel point is applied to the gelation experiments in nonstoichiometric systems of
Gordon and Scantlebury. Agreement between the theory and the observations is found to be excellent in every
region examined, confirming the mathematical soundness of the theory. The theory is transposed to the
site-bond problem. With the aid of a high dimension expansion of the ring distribution function, we derive an
analytic expression for the bond percolation threshold. The resultant equation is in good conformity with the
site-bond percolation simulation of Stauffer. The present theory is scrutinized over a wide range of dimensions
for pure bond percolation; the result shows that the theoretical line abruptly merges with the observed points
at d58, consistent with the Lubensky-Isaacson excluded volume theory which predicts the critical dimension
dc58 for sol clusters on lattices.

PACS number~s!: 82.35.1t, 82.20.Db, 82.70.Gg
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I. INTRODUCTION

Estimation of gel points has been a long-standing prob
in polymer physics@1,2#. In his first paper on gelation, Flor
@1# showed that there exists a critical value for the exten
reaction,Dco51/( f 21) ~the subscripto denotes the critica
value based on the tree model!, above which an infinite
branched molecule emerges. For the purpose of compa
his theoretical consideration with observed gel points, he
ried out experiments himself with branched polyesterifi
tions: According to his paper, ‘‘there is no difficulty in lo
cating the gel point. . . . Samples removed just prior
gelation are completely soluble in chloroform or chloroform
dioxane mixture. Samples removed two or three minutes
ter gelation do not dissolve completely in such solvents
small amount of very gelatinous precipitate remaining s
pended in the solution.’’ The observed gel points show
that the reactions proceeded appreciably beyond the a
theoretical pointDco. He reasoned that the discrepancy b
tween the theoretical values and the observed values ca
ascribed to the occurrence of intramolecular reaction.

Since Flory’s memorable paper, numerous attempts h
been made to formulate the theoretical gel point. Becaus
insufficient knowledge about cyclization frequency
branching media, however, none of those were quantitativ
successful. Thus, despite its immense importance in gela
physics, so far the gel point problem has not been in the m
stream of polymer physics.

The gel point is defined as a point at which~i! an infi-
nitely large molecule emerges, so that~ii ! the average mo-
lecular weight diverges, and~iii ! solution viscosity become
infinite; from a physicochemical point of view, even mo
important is that~iv! above this point there appears elas
material insoluble in any solvents. According to experime
carried out along these lines, it has been pointed out by
perimentalists@3# that considerable uncertainty arises in e
timating the gel point. At present, we can evaluate the
perimental errors arising from the classical technique on
basis of the experiments by Flory@1#, Wile @4#, and Gordon
and Scantlebury@5#. Using exactly the same system compr
ing a mixture of pentaerythritol (R-A4) and an equivalen
PRE 621063-651X/2000/62~3!/3944~10!/$15.00
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quantity of adipic acid (R-B2), they observed, indepen
dently,Dc50.606~Flory!, 0.630~Wile!, and 0.623~Gordon
and Scantlebury!; the deviation from the mean, 0.620, is le
than 2.3%. Considering their experimental techniques, ba
on solution viscosity and solubility tests alone, the precis
is rather striking.

In turn, with respect to the percolation model, highly tec
nical methods have been devised to estimate the thr
old: ~i! the series expansion method based on
d’Alembert theorem@6#, ~ii ! the 1/(2d21) expansion@7#,
and ~iii ! Monte Carlo methods, together with rigorous sol
tions. Making full use of these methods, physicists have c
culated, with high precision, threshold values for various l
tices and dimensions. Early in 1961, Vyssotskyet al. @8#
found that the threshold appears to be little affected by
ferences of lattice type, but depends only on dimension
coordination numberz; they showed that the empirical co
relation zDc>d/(d21) holds to good approximation, al
though they were aware, from examples in two dimensio
that this is not rigorously true. The predicting power of th
empirical correlation has been repeatedly confirmed, lead
physicists to the notion of the dimensional invariance of
percolation threshold@9#. These findings spurred the sear
for a general formula that explains observed values o
wider dimensions@10#. Meanwhile, van der Marck@11#
could show some exceptional lattice types incommensu
with the known empirical formulas. He claimed thatd andz
are not sufficient to predict percolation thresholds, implyi
that an additional factor is needed to determine the thresh
Van der Marck investigated, with higher precision, extens
threshold values for various lattices; his results revealed
there are many examples with equald andz, but with differ-
ent thresholds@12#. He concluded that one cannot predict t
percolation threshold on the basis of dimension and coo
nation number alone.

We have taken an independent approach to this probl
from a purely chemical point of view@13#. Our central idea
is the unification of the tree model and cyclization; i.e., w
note that the critical pointDc is separable into the two term
of intermolecular reaction and cyclization:Dc5D~inter!
1D~ring!. In principle, one can thus theoretically estima
3944 ©2000 The American Physical Society
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PRE 62 3945ESTIMATION OF CRITICAL POINTS OF BRANCHED . . .
Dc by calculatingD~inter! andD~ring! independently. This
simple additive law is our starting point, from which analyt
expressions for the critical point can be deduced.

In this paper we present some advances on the cri
point problem recently developed in our laboratory. We b
gin with a minor generalization of the previous theory alo
with a correction. The theoretical result is then subjected
test by the experiments of Gordon and Scantlebury@5# and
Muller et al. @3#. Second, we transpose our theory to t
percolation problem. Taking account of the specificity of t
lattice model@14#, we derive a formula that estimates th
site-bond threshold; the result is examined with the co
sponding simulation experiments in three to six dimensi
by Stauffer@15,16#, and with bond percolation simulation
over a wider range of dimension. Finally, our theory is sc
tinized in light of the Lubensky-Isaacson excluded volum
theory@17# and marginal dimensionality@9,18#. Although we
push forward with our discussion taking theR-Af and the
R-Ag1R-Bf 2g models as examples, the same argument
plies to other models as well.

II. ESTIMATION OF CRITICAL POINT

A. Concept

Consider theR-Af branching reaction that allows progre
sive bond formation amongA type functional units~FU’s!,
whereR represents a monomer unit andf the functionality.
Given proper reaction conditions, an infinite molecule c
appear at a definitely defined point called the gel point.
general, this point is mentioned in terms of the extent
reactionDc . It is important to notice thatDc is separable
into the following two terms:

Dc5D~inter!1D~ring!. ~1!

D~inter! represents the extent of reaction of intermolecu
reaction alone andD~ring! that of cyclization alone. Note
that only two FU’s~one bond! are wasted at every cycliza
tion independently of ring size. Thus, it is convenient
define cyclic bonds as equivalent to excess bonds wh
when broken, do not disconnect a polymer molecule. Let@G#
be the number concentration of total rings andC(5M0 /V)
the initial monomer number concentration of the syste
One has the equality

D~ring!5
2@G#

f C
~R-Af !.

Then let us proceed to the formulation ofD~inter!. Sup-
pose an equilibrium branching process where some frac
pR of all the FU’s f M0 is already occupied by cyclic bonds
The remaining FU’s then form the equilibrium distributio
$ f 1M1 , f 2M2 ,...,f iM i ,...%, whereMi denotes the number o
monomer units havingf i FU’s. We write the gel point of this
mixing system as

1

^ f &21
~R-Af !,

which is equal to the ratio of the number of FU’s consum
by intermolecular reaction to the sum( i f iM i excluding the
al
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FU’s wasted by cyclic bonds.D~inter! is the ratio as agains
all the FU’s, f M0 , so, following the definition of the exten
of reaction, therefore, it is necessary to multiply the facto

( i f iM i

f M0
[12

Number of FU’s wasted by cyclization

Total number of FU’s

512pR ,

wherepR is the probability of a FU being occupied by cycl
bonds, and is equivalent toD~ring!. Thus D~inter! can be
written in the form

D~inter!5~12pR!H 1

^ f &21J ,

which leads Eq.~1! to the following analytic expression:

Dc5~12pR!H 1

^ f &21J 1
2@G#

f C
~R-Af !. ~2!

In the same way, for theR-Ag1R-Bf 2g model where bond
formation is permitted only between anA-type FU and a
B-type FU, one has

Dc5~12pR!
1

A~^g&21!~^ f 2g&21!
1

@G#

gCA

~R-Ag1R-Bf 2g! ~3!

for the equimolar case of the different functionalities (g5 f
2g), where CA represents the concentration forA-type
monomer units. Hence the problem of estimating the
point reduces to the problem of solving the above equalit
In our previous papers@13#, the factor (12pR) dropped out.

B. Solving basic equalities

To solve the basic equalities, we introduce the assump
that cyclic bonds distribute randomly over all monom
units: the random distribution assumption of cyclic bond.
By this, we mean that each FU has an equal chance to
dergo cyclization.

Given the random distribution assumption, the mean fu
tionality ^¯& is simply given by the weight-average func
tionality defined bŷ f &5( i f i

2Mi /( i f iM i , and the distribu-
tion of $Mi% is binomial. Then it is an easy task to calcula
the mean functionalitŷ¯&. Let f i

m be themth moment, and
one has

^ f &5
f i

2

f ī

5~ f 21!~12pR!11.

Upon substituting this result into the foregoing equality~2!,
one gets

Dc5
1

f 21
1

2@G#

f C
for the R-Af model, ~4!

and in the same way
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3946 PRE 62KAZUMI SUEMATSU AND MINORU KOHNO
Dc5
1

A~g21!~ f 2g21!
1

@G#

gCA

for the R-Ag1R-Bf 2g model. ~5!

These equations are exactly the independence model d
oped in our previous papers@13#. Now the problem of seek
ing analytic expressions for gel points has been reduce
finding the number concentration of cyclics@G#.

C. Real system

In this section we consider real branching reactions
which the R-Ag1R-Bf 2g model applies. LetM0 be the
number ofA-type monomer units,N0 that of B-type mono-
mer units, and (f 2g)N0 /gM01k the number ratio ofB- to
A-type FU’s. For the purpose of comparing with expe
ments, it is often more convenient to introduce the conc
tration for total monomer units:

C5
M01N0

V
5S f 2g1gk

f 2g DCA ,

whereCA5M0 /V as defined above. Now we begin with
stoichiometric system.

Stoichiometric system„kÄ1…

To seek the general form of@G#, we introduce the math
ematical technique of the high concentration expansion
the limiting solution@G#C→` . Prior to applying the expan
sion method, we note that~i! the ring distribution function

@G#C→`5(
j 51

`

w j@~g21!~ f 2g21!D2# j /2j

~R-Ag1R-Bf 2g! ~6!

is physically meaningful only if we are below the classic
gel pointDco, and~ii ! the classical gel point is realized on
in the limit of C→` ~w j denotes the relative frequency o
cyclization of j chains to intermolecular reaction, defined
w j5P/v, whereP is the probability of one end of a chai
entering into a small volumev around the other end!. With
these restrictions in mind, we set up the imaginary equa
~Appendix A!

@G#5(
j 51

`

w j@~g21!~ f 2g21!Dc
2# j /2j , ~7!

the left hand side representing the general expression o
number concentration of rings and the right hand side
maining the limiting case ofC→`. Experiments have
shown that sol-gel lines are monotonic and continuous fu
tions of Dc and C. Thus, regarding Eq.~7! as a function
Z(Dc) of Dc , we expand the equation with respect toDc
5Dco, manipulation of which justifies the equality~7!. Col-
lecting the leading two terms in the resultant series,

@G#5Z~Dc!>Z~Dco!1Z~1!~Dco!~Dc2Dco!,
el-
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and substituting into Eq.~5!, we recover the previous results
for d>3 ~Appendix A!,

Dc5Dco 5 12@ f /g~ f 2g!Dco#(
j

`

~121/2j !w jg

12@ f /g~ f 2g!Dco#(
j

`

w jg 6
~R-Ag1R-Bf 2g! ~8!

whereg51/C and we have made use of the classical relat
(g21)( f 2g21)Dco

2 51.
Equation~8! is exact at high concentration. This is fortu

nate, because gelation is a phenomenon typical of con
trated systems.

Nonstoichiometric system„kÅ1…

Extension of Eq.~8! to a nonstoichiometric system (k
Þ1) is achieved simply by the following transformation:

f

g~ f 2g!Dco
⇒ f 2g1gk

g~ f 2g!DAco
,

Dco5
1

A~g21!~ f 2g21!
⇒ DAco5

k

A~g21!~ f 2g21!
,

~88!

whereDAco is the corresponding quantity forA-type FU’s.

Comparison to experiment

There are not many experimental determinations of
points. Systematic work is even more scarce and can
found in only a few papers. Figure 1~a! shows some of such
examples: the gelation in the pentaerythritol–adipic a
system studied by Flory~n!, Wile ~L!, and Gordon-
Scantlebury~3: k51.0, 1.5, and 2.0!. The theoretical lines
~solid lines! of Eq. ~88! are superimposed on the observ
points as functions ofg andk. Consulting the observed val
ues by Jones, Scales, and Semlyen in linear systems@19#,
and taking gem-substituent effects into consideration@13#,
the samew j values as evaluated in the preceding paper w
employed.1 The theoretical result is in good agreement w
the experimental points for every region examined@Fig.
1~a!#.

The theory is compared with another experiment with
different polymer mixture. Recent development of rheolo

1According to the Lubensky-Isaacson theory@17#, branched mol-
ecules (f >3) in concentrated solutions are expected to exert ap
ciable excluded volume effects in three dimensions. Martin, Syk
and Hioe@20# showed that this may lead to reduction of the cycliz
tion probability. As a result, the evaluation ofw j based on linear
systems (f 52) without excluded volume effects tends toward ove
estimation. This may appear to deprive the present examinatio
rigor. Now recall that we are dealing with perturbation from t
hypothetical limit of C→` where all sorts of excluded volum
effects are expected to vanish rigorously andw j takes Gaussian
values in nature. There is a mathematical reason for using lin
systems as a measure ofw j .
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cal characterization of polymer solutions has enabled exp
mentalists to identify the gel point. This new field was orig
nated by Tung and Dynes@21#, and later developed by
Chambon and Winter@22#. The essence of this work is neat
disclosed in the short paper by Tung and Dynes. Th
showed that a crossover of the loss (G9) and storage (G8)
moduli occurs near the gel point. Mulleret al. @3,23# applied
this finding to the gelation of a mixture of polyethylene o
ide ~g52, M̄n>1000! and Desmodur RF~f 2g53, Mn
5465! diluted by dioxane, and they observedDc50.71.

We now estimate the theoretical gel point in this syste
The mean molecular mass of the mixture of interest is c
culated to be3

5 310001 2
5 34655786 g/mol for the equimo-

lar case (k51). Considering the dilution effect~33 wt %! by
dioxane, it follows thatg'2.4 l/mol. The polyethylene oxide
molecule in question is composed of'70 skeletal bonds on
average. With the Flory characteristic constant@24# Cn

5^r n
2&/nl 2>4 for polyethylene oxide in theQ regime, one

FIG. 1. Dc vs g ~l/mol! curve.~a! Comparison of Eq.~8! ~solid
line! and the experimental gel points of Flory~n, k51!, Wire ~L,
k51!, and Gordon and Scantlebury~3, k51, 1.5, and 2.0!. DAc is
the extent of reaction of the A-type functional unit~OH!. ~s!, clas-
sical gel points;~^!, critical dilutions. ~b! Comparison of Eq.~8!
~solid line! and the experimental gel point of Mulleret al. @3# ~L!.
The inset is a magnification of the same figure.s, classical gel
points; ^, critical dilutions.
ri-

y

.
l-

has( j 51
` w j /2j >1.531025 and( j 51

` w j>6.031025. As this
extremely small relative cyclization frequencyw j indicates,
the production of rings is nearly negligible in the syste
under consideration. So, without any further calculation, o
gets the classical valueDc50.707, in agreement with the
observation of Mulleret al., Dc50.71. For comparison, in
Fig. 1~b! is plotted the theoretical line~solid line! based on
Eq. ~8! as a function ofg together with the experimenta
point ~L! of Muller et al.

As we saw in Fig. 1, for every example examined, agr
ment between the theory and the experiments is very s
factory, in support of the mathematical soundness of
present theory. Equations~8! and ~88! make one prediction,
the existence of the critical dilution

gc5
12DAco

~ f 2g1gk!/@g~ f 2g!#(
j 51

`

~1/DAco2111/2j !w j

~9!

beyond which gelation cannot occur. According to Eq.~9!,
the largerk, the moregc should shift downward, consisten
with the observations@Fig. 1~a!#. For the ideal tree model
one hasw j→0, so thatgc→`, and the critical dilution van-
ishes. In real gelation such vanishing ofgc never occurs
because of the presence of a finite cyclization probabil
The critical dilution is a general theorem for real branchi
reactions@25#.

D. Percolation model

To apply the present theory to the percolation model, i
essential to take into consideration the specifics of the p
colation model@13~c!,14#. Let ps be the fraction of sites to
be occupied by monomer units. The total possible bond nu
ber is given by1

2 f M0ps
2. The fundamental equality is the

modified as follows:

Dc5~12pR!H 1

^ f &21J 1
2@G#

f Cps
2 , ~10!

where C is the site concentration. The mean functional
^¯& is an unknown quantity, but, if a random distribution
cyclic bonds is assumed, it simplifies again to the weig
averaged quantity

^ f &5
f i

2

f ī

5~ f 21!ps~12pR!11,

and one has

Dc5
1

~ f 21!ps
1

2@G#

f Cps
2 . ~11!

Now the only task we should do is to derive a ring dist
bution function on lattices. Recall that, whereas real syste
converge on the tree diagram with no rings asC→`, it is as
d→` that the percolation model converges on the same
gram ~Bethe lattice!. Phenomenologically@26#, high dimen-
sions in the percolation model correspond to high concen
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3948 PRE 62KAZUMI SUEMATSU AND MINORU KOHNO
tions in real systems. We make full use of this property
derive ring distribution functions on lattices. Relegating t
lengthy derivation to Appendix B, we show the result onl

@G#d→`>Cps(
j

`

P@~ f 21!psD# j /2j ~site-bond model!

~12!

for the limiting case ofd→`, whereP is the cyclization
probability that one end of a chain enters into the small v
umev within the radius of a bond lengthl around the other
end ~see Fig. 2!. Our previous work is the special case
ps51.

The corresponding expression forC→` for the same
R-Af model of real systems is of the form

@G#C→`5(
j 51

`

w j@~ f 21!D# j /2j

~C→` for real systems!. ~68!

Comparing Eqs.~12! and ~68!, it turns out that there are
substantial differences in cyclic production between the p
colation model and real systems. All these arise from the
that the percolation clusters are fixed on lattices~see Appen-
dix B and Ref.@13~c!#! so that the intermolecular reactio
rate ~B1! follows the first order ofC and has no dimension
dependent term.

Percolation threshold

As the critical point is approached, the total chances
cyclization ( jf j should diverge~see Appendix B!, so that
the site-bond threshold is given by

Dco5
1

~ f 21!ps
for d→`~site-bond problem!. ~13!

Now we derive a more general formula for the percolat
threshold. Simulation experiments tell us that the site-bo
percolation line is a continuous function ofDc ~or d!. By

FIG. 2. Schematic representation of cyclization probabilityP.
o

l-

r-
ct

f

d

analogy with the discussion in real systems, we now con
ourselves to high dimensions so that Eq.~12! is a good ap-
proximation of@G#. Then we regard Eq.~12! as a function of
Dc and expand with respect toDc5Dco (1/d50). With the
help of Eq.~13!, and collecting the leading two terms, on
gets

@G#>CpsS (
j

`

P/2j 1~ f 21!ps(
j

`

P/2~Dc2Dco!D .

Substituting this series into Eq.~11!, and with some rear-
rangement, one obtains a general formula for the bond
colation threshold:2

Dc5
1

~ f 21!ps 5 12@~ f 21!/ f #(
j

`

~121/j !P

12@~ f 21!/ f #(
j

`

P 6
~site-bond problem! ~14!

for d>3 ~see Appendix A!.
It is clear thatP→0 asd→`, and one recovers Eq.~13!

in the asymptotic limit. By virtue of the 1/d50 expansion of
@G#, Eq. ~14! is exact in high dimensions. Equation~14! sug-
gests a simple relation betweenDc andps ,

Dc}ps
21,

showing that the bond percolation threshold changes line
with the reciprocal of the fraction of sites, in accordance w
the observations by Agrawalet al. @16# and by Stauffer@15#.

Now the present result is subjected to test by simulat
experiments using the percolation theory. For this purpo
Eq. ~14! is computed assuming Gaussian behavior ofP,

P5E
0

l

SdP~r !dr,

together with the average end-to-end distance ofj chains
without excluded volume effects,

^r j
2&5

f

f 22
nj l

22
2~ f 21!

~ f 22!2 l 2 ~hypercubic lattices!,

whereSd is the surface area of ad-dimensional sphere,P(r )
the end-to-end distance distribution,l the size of a unit cell
~bond length!, and nj the number of bonds constituting aj
chain. Let thej chain be comprised ofj sites; then one has
nj5 j 21. Only even-numbered rings can occur for hyperc
bic lattices. One has thereforenj53,5,7, . . . ,2k11, . . . , for

2One may wish to use the exact equation~B3! in place of Eq.
~B38!, expressing the threshold equation as

Dc5
1

~f21!ps
H12(j

`~121/j !P
12( j

`P J . ~148!

Equation~148! slightly improves agreement with the simulation va
ues@10# compared with Eq.~14!.
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PRE 62 3949ESTIMATION OF CRITICAL POINTS OF BRANCHED . . .
j 54,6,8, . . . , respectively. With the substitution̂r j
2&8nl 2

along with n5@ f /( f 22)#nj22( f 21)/( f 22)2, P reduces
to

P512
G~d/2,d/2n!

G~d/2!
,

whereG(d/2,d/2n) is an incomplete gamma function define
by G(a,z)5*z

`ta21e2tdt.
Examples ford53 – 6 computed according to the abo

equations are shown in Fig. 3 against the reciprocal ofps ,
together with simulation results by Stauffer~L, d53; n,
d54; h, d55;3,d56! @15#. The theoretical lines~solid
lines for d53 and 5; broken lines ford54 and 6! are in
good conformity with the observed points by Stauffer.
date, within our knowledge, the corresponding site-bond d
grams in higher dimensions have not been investigated
we cannot test Eq.~14! in these regimes at present. Howev
there is a reason to believe that better agreement betwee
theory and simulation experiments will be observed ford
>8. We show below the grounds for this conjecture throu
comparison with pure bond percolation simulations (ps51)
and in light of the Lubensky-Isaacson excluded volu
theory.

Comparison with pure bond percolation simulations„psÄ1…

Although the outline of the examination has been repor
in our previous paper, here we scrutinize the result in m
detail. In Fig. 4~a! the theoretical line~heavy line! was com-
puted again assuming Gaussian behavior ofP, and agrees
remarkably well with the simulation points~L! in higher
dimensions, but fails in lower dimensions. The discrepa
amounts to> 10% in three dimensions, 6% in four dimen
sions, 3% in five dimensions, and so forth, rapidly decre
ing with increasing dimension. To show up the discrepan
the same data are replotted in Fig. 4~b! in terms of scaled
critical points (Dc2Dco)/Dco. Upon inspecting the magni
fied curves in Fig. 4~b!, we meet with the prominent featur
of modern statistical physics, the marginal dimensional

FIG. 3. Comparison of Eq.~14! ~solid lines for d53 and 5;
broken lines ford54 and 6! and simulation points~L, d53; n,
d54; h, d55; 3, d56! by Stauffer@15#. The open circle~s! is
the corresponding classical threshold 1/(2d21); i.e., 1/5 for d
53.
-
so
,
the

h

e

d
e

y

s-
,

,

where the theoretical line abruptly merges with the simu
tion line exactly atd58, testifying that the shift from an
excluded volume to an ideal cluster is really a phase tra
tion and not an asymptotic phenomenon, consistent with
Lubensky-Isaacson prediction@17#.

III. d DEPENDENCE OF CYCLIZATION

In our previous papers@13# an unexpected feature of d
mensionality was disclosed for real branching reactio
Here we shall present a more general proof.

Suppose chemical reactions in real systems, and cons
a transition per unit bond formation fromi 21 bonds toi
bonds. The transition must be either an intermolecular re
tion or cyclization. LetnRj

be the rate of cyclization ofj

chains andnL the rate of intermolecular reaction. The c
clization probability of j chains during this small interva
d i (51) can be written as p$ring j %5(nRj

/nL)/(1

1( jnRj
/nL), and the total probability is

p$ring%5(
j 51

`

p$ring j %5

(
j

nRj
/nL

11(
j

nRj
/nL

. ~15!

FIG. 4. Comparison of Eq.~14! ~heavy line,ps51! and the
bond percolation thresholds~a! L and ~b! L @10#.
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Experiments have shown that the intermolecular reaction
follows the second order of the monomer concentration
cyclization the first order. We can thus formulate

p$ring%5

(
j

Bjw j /C

11(
j

Bjw j /C

for real systems ~16!

with Bj being a function ofD, but independent of the dimen
sion d, andw j the relative cyclization frequency as define
earlier. Now suppose a hypothetical dense solution where
Gaussian behavior applies to branched molecules. Accor
to the definition,w j can be written as

w j5
d

l d E
0

l

r d21S d

2p^r j
2& D

d/2

expS 2
d

2^r j
2&

r 2Ddr,

which reduces to

w j5
d

2pd/2l d FGS d

2D2GS d

2
,

d

2n D G .
It is easy to show thatw j first decreases with increasingd to
attain a minimum point, then increases indefinitely asd
→` ~Fig. 5!. Broadly speaking,w j varies as;dd/2, butC as
;constd, which leads Eq.~16! to p$ring%→1 and p$ inter%
512p$ring%→0, asd→`. Hence, at sufficiently high di-
mensions all the products should become cyclic in origin
branching reactions in real systems.

An important feature is that the dimensionality is close
connected with cyclization. This feature does not appea
have been fully recognized up to the present. The rea
simply comes from the fact that the occurrence of rin
together with excluded volume effects, has often been
nored for the sake of mathematical simplicity in the theory
gelation. It is therefore not surprising that the unexpec
dimension dependence of real systems has not been rea
so far.

IV. DISCUSSION

The examinations in Sec. II support the mathemati
soundness of the present theory, which in turn means tha
shift of Dc is caused by the waste of FU’s due to cyclizati

FIG. 5. Dimensionality dependence of the relative cyclizat
frequencyw j @molecules/lengthd#. Calculated for a Gaussian chai
te
d

he
ng

r

to
on
,
-
f
d
ed

l
he

throughout sol reactions up to the gel point, in accorda
with the conjecture of most polymer chemists@1,27–29#. In
consequence, we expect that, given the general solution
@G#, we would be able to estimate more accurately the criti
point over all concentrations. Unfortunately, however, the
does not seem to be a hope of a general solution. To d
only the following mathematical representation written
terms of the transition probability is known:

@G#5
1

2
f C(

j 51

` E
D

p$ring j %dD. ~R2Af ! ~17!

p$ring j % is given explicitly in Eq.~15! as the ratio of cy-
clization rate to total reaction rate. However, so far a f
description of the rate equations has not been found. E
worse is that the above integral does not appear soluble e
for the most elementary rate equations. Equation~17! has
been solved exactly only for the limiting cases ofC→` in
real systems andd→` in the percolation model, to yield
Eqs.~6! and~12!, respectively@13#. These circumstances le
us to the technique of the perturbation expansions mentio
in Sec. II. As a result, whereas simple analytic formulas
the critical points were gained, their validity was in retu
restricted to the neighborhood of the asymptotic regim
With this background in mind, we review the foregoing r
sults.

The only unknown quantity in the present theory is t
relative cyclization frequencyw j , which is correlated with
the equilibrium constant by the relationw j /2j 5K j . For
shorter chains,K j is known to vary widely according to
polymer species. Calculatingw j from first principles is there-
fore not yet on a firm foundation. For this reason, where
we have assumed the known power laww j` j 23/2 for long
chains, we have made use of the experimental values for
corresponding linear molecules for shorter chains. This is
ideal chain approximation. It is noteworthy that Eq.~8! then
reproduces remarkably well the observed gel points in en
regions~Fig. 1!. The discrepancy is less than a few perce
comparable to the experimental errors mentioned in Se
This suggests that the high concentration expansion in Se
has a sound mathematical basis and that a three-dimens
branched molecule in the concentrated sol phase is no
from a Gaussian molecule realizable in the limit ofC→` or
above the critical dimension.

In contrast to the situation in real systems, a distinct, la
deviation~'10%! was found in comparison with the three
dimensional percolation model. The discrepancy decrea
with increasing dimension, and disappears suddenly in e
dimensions~Fig. 4!. Equation~14! is thus exact ford>8,
much larger than the case in real systems.

The difference between real systems and the percola
model is comprehensible in light of the excluded volum
theory @17#: According to the Lubensky-Isaacson theory,
branched molecule in a monodispersed melt should have
critical dimensiondc54, above which Gaussian behavior a
plies, whereas a branched molecule in the dilution limit h
dc58. The latter critical dimension (dc58) is exactly equal
to the value predicted for a percolation cluster in the
phase@15,30#. For the present case, the critical dimension
dc58 applies, sinceDc depends on the frequency of cycliza
tion in the sol phase up to the gel point. In the percolat
model, our world (d53) is farther away from the critica
dimension (dc58) than is the case (dc,8) of real branch-
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ing reactions. This is the reason for the remarkable ag
ment between the theory and experiments in real gelat
~@13~a!#; Fig. 1! and the large deviation in the percolatio
model in low dimensions~Figs. 3 and 4!.

Finally, we would like to mention that the present theo
is in harmony with recent work based on physical a
proaches@10–12,31#. Now we restrict our arguments to th
critical dimension (dc58) or higher. Then the threshold, Eq
~14!, is determinable by two parameters,f ~q in the notation
of @10#! and d, in accordance with the Galam and Maug
work ~note thatnj in P disappears by summation!. We see,
on the other hand, that Eq.~14! includes a hidden variable
the cyclization probabilityP512G(d/2,d/2n)/G(d/2) that
varies widely depending on lattice type, in accordance w
the van der Marck conjecture@11#.

V. CONCLUDING REMARKS

~1! The analytic expression~8! for the gel point was re-
examined with gelation experiments on nonstoichiome
systems by Gordon and Scantlebury@5#, showing excellent
agreement between theory and experiment in every re
examined, which has again confirmed the mathemat
soundness of the present theory.

~2! We have presented Eq.~14! which predicts the bond
percolation threshold. The theory is exact above eight dim
sions, suggesting the critical dimensiondc58 for sol clusters
on lattices, consistent with the Lubensky-Isaacson exclu
volume theory.

APPENDIX A: EXPANSION METHOD

Differentiate Eq.~7! with respect toDc5Dco to yield

Z~n!uDc5Dco
5

1

Dco
n (

j

`

w j

~2 j 21!!

~2 j 2n!!
. ~A1!

Now suppose a special situation where a branched mole
is Gaussian so thatw j} j 2d/2. Then it is obvious that the
right hand side of Eq.~A1! diverges forn>1, if d<2. Thus,
the expansion method@and therefore Eqs.~8! and~14! in the
text# applies ford>3.

APPENDIX B: CYCLIC DISTRIBUTION IN SITE-BOND
PERCOLATION

Consider a lattice of sufficiently large size and high
mensionLd~L andd→`! so that clusters can be ideal. L
the probability of a given site being a monomer molecule
ps . The intermolecular reaction ratenL can be equated to th
product of the probability of a given functional unit on
cluster entering into a small volumev with the radius of a
bond lengthl around a FU on the other cluster, and the to
number of all pairs~we putl as the size of the unit cell!. For
the present case, molecules are fixed on lattices, and eac
has a single chance to react, so that it can react with
nearest neighbor alone, which is always unreacted becau
the lattice specificity. Thus, the intermolecular reaction r
is simply

nL5 1
2 I 8 f M0ps

2~12D !31, ~B1!
e-
ns

-

r

h

c

n
al

n-

d

le

e

l

FU
e
of

e

whereI 8 is a coefficient.
Then we proceed to calculation of the cyclization ra

The cyclization ratenRj
of j chains is in proportion to the

cyclization probabilityP multiplied by the total numberf j
of chances of cyclization:

nRj
}P3f j .

P is the quantity defined in the text~Sec. II D!.
The total numberf j of chances of cyclization forj chains

can be estimated as follows. Suppose anm tree that hasl
reacted FU’s,m unreacted FU’s, andn dead ends in the firs
generation. Then,l 1m1n5 f , which follows the trinomial
distribution @32#:

@psD1ps~12D !112ps#
f

5(
l 50

f

(
m50

f 2 l
f !

l !m!n!
~psD ! l@ps~12D !#m~12ps!

n.

Let N(A) j be the number of FU’s in thej th generation. It is
clear that

N~A!15 l .

Each individual FU creates (f 21)ps new FU’s on average
So the number of FU’s in the second generation is

N~A!25 l ~ f 21!ps

and

N~A! j5~ f 21!psDN~A! j 21

5@~ f 21!psD# j 22N~A!2 .

The total number of chances of cyclization forj chains is
calculated via

f j5
1

2
M0ps(

l 50

f

(
m50

f 21

m
f !

l !m!n!

3~psD ! l@ps~12D !#m~12ps!
nN~A! j~12D !,

which results in

f j5
1
2 M0ps

3f ~ f 21!~12D !2@~ f 21!psD# j 21.

Then we turn attention to the self-avoiding walk for
lattice chain. Afterj steps, let one end enter into the volum
v around the other end; more exactly, on any one of
neighboringf sites. Because of excluded volume effects, i
mediate reversals are forbidden for the end; so there e
( f 21)ps possible paths~FU’s! for another step. The prob
ability of these paths being vacant~unreacted! is 12D. The
total number of paths available for the end is thereforef
21)ps(12D). Of these only one path can lead to the oth
end. Thus the probability of the two ends closing in a ri
can be written

Pcy5
P

~ f 21!ps~12D !
,

whence the cyclization rate can be formulated as
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nRj
5I 8S P

~ f 21!ps~12D ! D $ 1
2 M0ps

3f ~ f 21!

3~12D !2@~ f 21!psD# j 21%. ~B2!

The relative rate therefore becomes

nRj

nL
5P@~ f 21!psD# j 21.

Recall thatP is a monotonically decreasing function ofd, so
that the transition probability, Eq.~15!, reduces to

p$ring j %→nRj
/nL for d→`.

The transition probability is equivalent to the number fra
tion of rings, and one has viad i 5 1

2 f M0ps
2dD

d@G#d→`5d (
j

`

NRj
/V5

f ps

2~ f 21!

3C(
j

`

P@~ f 21!ps#
jD j 21dD.
.

.

,

ou
.

w

-

.

-

Now integrate the above differential with respect toD, and
one arrives at the asymptotic solution of the ring distributi
function for the site-bond problem:

@G#d→`5
f

~ f 21!
Cps(

j

`

P@~ f 21!psD# j /2j . ~B3!

Sincef is an increasing function ofd, the prefactor may be
approximated as

f

~ f 21!
>1 for large f .

Then Eq.~B3! reduces to

@G#d→`>Cps(
j

`

P@~ f 21!psD# j /2j . ~B38!
, J.
s.
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