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Estimation of critical points of branched polymers
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The authors’ theory of the gel point is applied to the gelation experiments in nonstoichiometric systems of
Gordon and Scantlebury. Agreement between the theory and the observations is found to be excellent in every
region examined, confirming the mathematical soundness of the theory. The theory is transposed to the
site-bond problem. With the aid of a high dimension expansion of the ring distribution function, we derive an
analytic expression for the bond percolation threshold. The resultant equation is in good conformity with the
site-bond percolation simulation of Stauffer. The present theory is scrutinized over a wide range of dimensions
for pure bond percolation; the result shows that the theoretical line abruptly merges with the observed points
atd=8, consistent with the Lubensky-Isaacson excluded volume theory which predicts the critical dimension
d.=8 for sol clusters on lattices.

PACS numbse(s): 82.35:+t, 82.20.Db, 82.70.Gg

[. INTRODUCTION quantity of adipic acid R-B,), they observed, indepen-

Estimation of gel points has been a long-standing probIerrqently’ D=0.606(Flory), 0.630(Wile), and 0.623Gordon

in polymer physicg1.2]. In his first paper on gelation, Flor and Scantlebuny the deviation from the mean, 0.620, is less
[1]pSh¥)WEdR[h>;lt ther,e éxists a critti)aFvaIue ngor the éxten}t/ofthan 2.3%. Considering their experimental techniques, based

. ) - on solution viscosity and solubility tests alone, the precision
reaction,D.,=1/(f—1) (the subscripb denotes the critical

. S is rather striking.
value based on the tree moplebove which an infinite In turn, with respect to the percolation model, highly tech-

branched molecule emerges. For the purpose of comparingca| methods have been devised to estimate the thresh-
h|s theoretical gon3|dera}t|on W|th_ observed gel points, hc.a.caro|d: (i) the series expansion method based on the
ried out experiments himself with branched polyesterifica-g'Alembert theorem(6], (i) the 1/(2d—1) expansion7],
tions: According to his paper, “there is no difficulty in lo- and (iii) Monte Carlo methods, together with rigorous solu-
cating the gel point. ... Samples removed just prior totions. Making full use of these methods, physicists have cal-
gelation are completely soluble in chloroform or chloroform- culated, with high precision, threshold values for various lat-
dioxane mixture. Samples removed two or three minutes aftices and dimensions. Early in 1961, Vyssotsiyal. [8]
ter gelation do not dissolve completely in such solvents, dound that the threshold appears to be little affected by dif-
small amount of very gelatinous precipitate remaining susferences of lattice type, but depends only on dimension and
pended in the solution.” The observed gel points showedoordination numbeg; they showed that the empirical cor-
that the reactions proceeded appreciably beyond the abovelation zD.=d/(d—1) holds to good approximation, al-
theoretical pointD.,. He reasoned that the discrepancy be-though they were aware, from examples in two dimensions,
tween the theoretical values and the observed values can ltleat this is not rigorously true. The predicting power of this
ascribed to the occurrence of intramolecular reaction. empirical correlation has been repeatedly confirmed, leading
Since Flory’s memorable paper, numerous attempts havehysicists to the notion of the dimensional invariance of the
been made to formulate the theoretical gel point. Because gfercolation thresholfi9]. These findings spurred the search
insufficient knowledge about cyclization frequency infor a general formula that explains observed values over
branching media, however, none of those were quantitativelyider dimensions[10]. Meanwhile, van der MarcK11]
successful. Thus, despite its immense importance in gelatiopould show some exceptional lattice types incommensurate
physics, so far the gel point problem has not been in the maiwith the known empirical formulas. He claimed tlthaindz
stream of polymer physics. are not sufficient to predict percolation thresholds, implying
The gel point is defined as a point at whi@h an infi-  that an additional factor is needed to determine the threshold.
nitely large molecule emerges, so tl#a) the average mo- Van der Marck investigated, with higher precision, extensive
lecular weight diverges, an(i) solution viscosity becomes threshold values for various lattices; his results revealed that
infinite; from a physicochemical point of view, even more there are many examples with eqaedndz, but with differ-
important is that(iv) above this point there appears elasticent threshold$12]. He concluded that one cannot predict the
material insoluble in any solvents. According to experimentgpercolation threshold on the basis of dimension and coordi-
carried out along these lines, it has been pointed out by exAation number alone.
perimentalistd 3] that considerable uncertainty arises in es- We have taken an independent approach to this problem,
timating the gel point. At present, we can evaluate the exfrom a purely chemical point of viewl3]. Our central idea
perimental errors arising from the classical technique on thés the unification of the tree model and cyclization; i.e., we
basis of the experiments by Flof¥], Wile [4], and Gordon note that the critical poinD . is separable into the two terms
and Scantlebur{5]. Using exactly the same system compris-of intermolecular reaction and cyclizationD .= D(inter)
ing a mixture of pentaerythritolR-A,) and an equivalent +D(ring). In principle, one can thus theoretically estimate
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D. by calculatingD (inter) and D(ring) independently. This FU’s wasted by cyclic bond® (inter) is the ratio as against
simple additive law is our starting point, from which analytic all the FU’s,fM, so, following the definition of the extent

expressions for the critical point can be deduced. of reaction, therefore, it is necessary to multiply the factor
In this paper we present some advances on the critical o

point problem recently developed in our laboratory. We be- ZifiM; _~ Number of FU's wasted by cyclization

gin with a minor generalization of the previous theory along M, Total number of FU’'s

with a correction. The theoretical result is then subjected to

test by the experiments of Gordon and ScantleljGilyand =1-pg,

Muller et al. [3]. Second, we transpose our theory to the
percolation problem. Taking account of the specificity of the : X ) 4

lattice model[14], we derive a formula that estimates the 20ndS, and is equivalent ©(ring). Thus D(inter) can be
site-bond threshold; the result is examined with the corre!Vritten in the form
sponding simulation experiments in three to six dimensions 1

by Stauffer[15,16], and with bond percolation simulations D(inter)z(l—pR)[—],

over a wider range of dimension. Finally, our theory is scru- (fH—1

tinized in light of the Lubensky-lsaacson excluded volume | ) ) ]
theory[17] and marginal dimensionalif, 18]. Although we which leads Eq(1) to the following analytic expression:
push forward with our discussion taking tiRe A; and the 1
R—_Ag+ R-B;_4 models as examples, the same argument ap- D.=(1— DR)[—
plies to other models as well. (fH-1

wherepg is the probability of a FU being occupied by cyclic

2[T]
METoN (R-Af). 2

In the same way, for th&-Ay+R-B;_4 model where bond
formation is permitted only between aktype FU and a
A. Concept B-type FU, one has

II. ESTIMATION OF CRITICAL POINT

Consider thdR-A; branching reaction that allows progres-
sive bond formation among type functional unitgFU’s), D.=(1-pg) 1 + [1']
whereR represents a monomer unit ahdhe functionality. ¢ J{@)—1)((f—g)—1) 9Ca
Given proper reaction conditions, an infinite molecule can
appear at a definitely defined point called the gel point. In (R-Ag+R-B_g) ©)
general, this point is mentioned in terms of the extent of
reactionD.. It is important to notice thaD. is separable for the equimolar case of the different functionalities=(f

into the following two terms: —g), where C, represents the concentration fé«type
) ) monomer units. Hence the problem of estimating the gel
D.=D(inten)+D(ring). (1) point reduces to the problem of solving the above equalities.

. . ) In our previous papersl 3], the factor (1 dropped out.
D(inten represents the extent of reaction of intermolecular P papersi] (pr) PP

reaction alone and(ring) that of cyclization alone. Note
that only two FU’s(one bongl are wasted at every cycliza-
tion independently of ring size. Thus, it is convenient to To solve the basic equalities, we introduce the assumption
define cyclic bonds as equivalent to excess bonds whichthat cyclic bonds distribute randomly over all monomer
when broken, do not disconnect a polymer molecule [LCét units: therandom distribution assumption of cyclic bonds
be the number concentration of total rings &= Mg /V) By this, we mean that each FU has an equal chance to un-
the initial monomer number concentration of the systemdergo cyclization.

B. Solving basic equalities

One has the equality Given the random distribution assumption, the mean func-
tionality (---) is simply given by the weight-average func-
D(ring)— 2[r'] (RA) tionality defined by(f)=3;f2M;/=;f;M;, and the distribu-
fC v tion of {M;} is binomial. Then it is an easy task to calculate

) ) the mean functionality- - -). Let f" be themth moment, and
Then let us proceed to the formulation Dfinter). Sup-  gne has

pose an equilibrium branching process where some fraction

pr of all the FU'sfMj is already occupied by cyclic bonds. 2
The remaining FU’s then form the equilibrium distribution (fy=—==(f—1)(1-pr) +1.
{fiM1,f5M5, ... fiM;,...}, whereM; denotes the number of f;
monomer units havind;, FU’s. We write the gel point of this
mixing system as Upon substituting this result into the foregoing equaliy,
one gets
- (R-Ar)
- -Ay),
(-1 DC=%+2],[—£] for the R-A; model, (4

which is equal to the ratio of the number of FU’s consumed
by intermolecular reaction to the subf;M; excluding the and in the same way
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1 [T] and substituting into E(5), we recover the previous results:
= + for d=3 (Appendix A,
“ o D(g 1 9Ca PP
for the R-Aq+R-B;_y model. (5) 1—[1‘/9(1‘—<;J)Dc0]2j (1-1/2)) )y
Th i tly the independ del devel- ¢ .
ese equations are exactly the independence model devel- B B '
oped in our previous papef$3]. Now the problem of seek- 1=[f/g(f g)DC"]; @Y
ing analytic expressions for gel points has been reduced to
finding the number concentration of cycligs]. (R-Ag+R-Bs_g) (8)

wherey=1/C and we have made use of the classical relation
. . . - (9=1)(f-g—1)Dg,=1.
In this section we consider real branching reactions t0 ~ gquation(8) is exact at high concentration. This is fortu-

which the R-Ag+R-B;_q model applies. LetM, be the  npate because gelation is a phenomenon typical of concen-
number ofA-type monomer unitsN, that of B-type mono-  trated systems.

mer units, and {—g)Ny/gMy+ « the number ratio oB- to
A-type FU’s. For the purpose of comparing with experi- Nonstoichiometric systenirx#1)
ments, it is often more convenient to introduce the concen-
tration for total monomer units:

C. Real system

Extension of EQ.(8) to a nonstoichiometric systemk (
#1) is achieved simply by the following transformation:

:MO\J;NO:(f_ngrg" N f f-g+gr
— ! 2 b

9 g(f_g)Dco g(f_g)DAco
whereC,=M,/V as defined above. Now we begin with a 1 «

stoichiometric system.

Deo= = Daco= ,
V(g-1)(f-g-1) V(g-1)(f-g-1)
Stoichiometric systenfx=1) (8)

To seek the general form ¢f'], we introduce the math- \hereD,, is the corresponding quantity féxtype FU’s.
ematical technique of the high concentration expansion of

the limiting solution[T"]c_,... Prior to applying the expan- Comparison to experiment

sion method, we note théi) the ring distribution function There are not many experimental determinations of gel

o points. Systematic work is even more scarce and can be
_ _ P 21i 19 found in only a few papers. Figurdd shows some of such
[F]C_m_jzl #il(9=1(F=g=1)DTJ72] examples: the gelation in the pentaerythritol—-adipic acid
system studied by Flory(A), Wile (¢), and Gordon-
(R-Ag+R-Bi_g) (6) Scantlebury(X: «=1.0, 1.5, and 2.0 The theoretical lines
(solid lineg of Eq. (8') are superimposed on the observed
is physically meaningful only if we are below the classical Points as functions oy and . Consulting the observed val-
gel pointD.,, and(ii) the classical gel point is realized only ues by Jones, Scales, and Semlyen in linear sysfé@sis
in the limit of C—o (¢; denotes the relative frequency of and taking gem-substituent effects into considerafib®],
cyclization ofj chains to intermolecular reaction, defined by the samep; values as evaluated in the preceding paper were
@;="Plv, whereP is the probability of one end of a chain employed: The theoretical result is in good agreement with
entering into a small volume around the other endwith ~ the experimental points for every region examirigdg.

these restrictions in mind, we set up the imaginary equalityl(a)]- ) ) . .
(Appendix A The theory is compared with another experiment with a

different polymer mixture. Recent development of rheologi-

[I]=2 ¢l(g-1)(f-g-1)DF]'12), )
. 1According to the Lubensky-Isaacson theiy], branched mol-

. . . les £=3) in concentrated solutions are expected to exert appre-
the left hand side representing the general expression of tHe" . - i )
P 9 9 P ciable excluded volume effects in three dimensions. Martin, Sykes,

nur.nber Conce.mr.a.ltlon of rings and the ngh_t hand side reémd Hioe[20] showed that this may lead to reduction of the cycliza-
maining the limiting case ofC—«. Experiments have

h that sol-cel i toni d i f tion probability. As a result, the evaluation gf based on linear
Sf own that sol-gel fines are mon_o onic and con muou; urlcéystems {=2) without excluded volume effects tends toward over-
tions of D, and C. Thus, regarding Eq(7) as a function

. . estimation. This may appear to deprive the present examination of
Z(D,) of D¢, we expand the equation with respect@@  yigor. Now recall that we are dealing with perturbation from the

= Do, manipulation of which justifies the equali€y). Col-  hypothetical limit of C—= where all sorts of excluded volume
lecting the leading two terms in the resultant series, effects are expected to vanish rigorously apdtakes Gaussian
values in nature. There is a mathematical reason for using linear
[T]1=Z(D¢)=Z(D¢o) +ZV(D¢o)(De— Do), systems as a measure @f.
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1 /@ TT has3{_,;/2j=1.5x10"° and={_;¢;=6.0x 10 °. As this
o extremely small relative cyclization frequengy indicates,
0.9 k=1 x,Z/x the production of rings is nearly negligible in the system
' L% / under consideration. So, without any further calculation, one
e/ / gets the classical valuB.=0.707, in agreement with the
0.8 w15 observation of Mulleret al, D.=0.71. For comparison, in
Dac /{ / Fig. 1(b) is plotted the theoretical linésolid line) based on
0.7 Eqg. (8) as a function ofy together with the experimental
) x=10 5;‘/" point (<) of Muller et al.
ox 9;«3 As we saw in Fig. 1, for every example examined, agree-
0.6 ment between the theory and the experiments is very satis-
factory, in support of the mathematical soundness of the
0.5 present theory. Equatior(8) and(8’) make one prediction,
~0 01 02 03 04 05 the existence of the critical dilution
1
o 7 U/C) i L Dy
Y= 0
1 /g (f—9+gK)/[g(f—g)]lZ1 (1Dpco—1+1/2)) ¢
0.95 ' ©)
0.9 / beyond which gelation cannot occur. According to E9),
/ the largerk, the morey. should shift downward, consistent
0.85 7 08 with the observation$Fig. 1(a)]. For the ideal tree model,
D, / one hasp;—0, so thaty,—, and the critical dilution van-
08 V4 075 ishes. In real gelation such vanishing 9f never occurs
0.75 A 072 because of the presence of a finite cyclization probability.
: " The critical dilution is a general theorem for real branching
07 Q/ 065 reactiong 25].
0 2 4 6
0 2000 4000 6000 8000 10000 D. Percolation model
vy /O To apply the present theory to the percolation model, it is
(b) essential to take into consideration the specifics of the per-

colation model[13(c),14]. Let ps be the fraction of sites to

FIG. 1. D. vs vy (I/mol) curve.(a) Comparison of Eq(8) (solid  be occupied by monomer units. The total possible bond num-
line) and the experimental gel points of Floig, x=1), Wire (O, ber is given by} fMyp2. The fundamental equality is then
x=1), and Gordon and Scantlebufx, k=1, 1.5, and 20 DaciS  modified as follows:
the extent of reaction of the A-type functional uf@H). (O), clas-
sical gel pointsy®), critical dilutions. (b) Comparison of Eq(8)
(solid line) and the experimental gel point of Mullet al.[3] (). Dc=(1—- pR)[m—_lj
The inset is a magnification of the same figute, classical gel
points; ®, critical dilutions.

2[T]

+ —, 10
where C is the site concentration. The mean functionality
(-++) is an unknown quantity, but, if a random distribution of

cal characterization of polymer solutions has enabled expereyclic bonds is assumed, it simplifies again to the weight-
mentalists to identify the gel point. This new field was origi- averaged quantity

nated by Tung and Dynef1], and later developed by

Chambon and Wintd22]. The essence of this work is neatly f_z

disclosed in the short paper by Tung and Dynes. They <f>:i:(f_ 1)ps(1—pr)+1,
showed that a crossover of the l0$8"} and storageG') f.
moduli occurs near the gel point. Mullet al.[3,23] applied

this finding to the gelation of a mixture of polyethylene ox- and one has

ide (g=2, M,=1000 and Desmodur RRf—-g=3, M,

=465) diluted by dioxane, and they observBg=0.71. D — 1 N 2[I'] 11)
We now estimate the theoretical gel point in this system. ¢ (f—1)ps ﬁf

The mean molecular mass of the mixture of interest is cal-

culated to be X 1000+ 2 X 465= 786 g/mol for the equimo- Now the only task we should do is to derive a ring distri-

lar case ¢=1). Considering the dilution effe¢€83 wt%) by  bution function on lattices. Recall that, whereas real systems
dioxane, it follows thaty~2.4 1/mol. The polyethylene oxide converge on the tree diagram with no ringsGas «, it is as
molecule in question is composed 70 skeletal bonds on d— < that the percolation model converges on the same dia-
average. With the Flory characteristic constd@d] C,  gram(Bethe lattice. Phenomenologically26], high dimen-
=(r2)/n/ 2=4 for polyethylene oxide in th® regime, one sions in the percolation model correspond to high concentra-
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analogy with the discussion in real systems, we now confine
ourselves to high dimensions so that EtR) is a good ap-
proximation of[I']. Then we regard Ed12) as a function of

D. and expand with respect @.=D_, (1/d=0). With the

P help of Eq.(13), and collecting the leading two terms, one
gets

©

[T]=Cps EJ) P/2j+(f—1)ps§j: PI2(D¢—Dey) |-

Substituting this series into Eqll), and with some rear-
rangement, one obtains a general formula for the bond per-
colation threshold:

1-[(f-1)/f]> (1-1))P
]

: : 1
- / - D.= =
! ! (f_l)ps
1-[(f-1)/f]> P
FIG. 2. Schematic representation of cyclization probabifity ]
tions in real systems. We make full use of this property to (site-bond problem (14

derive ring distribution functions on lattices. Relegating the

lengthy derivation to Appendix B, we show the result only; for =3 (see Appendix A
It is clear thatP—0 asd—«, and one recovers E¢LJ)

* o _ in the asymptotic limit. By virtue of the @l/=0 expansion of
[[1g_-=Cps>, Pl(f—1)pD]I/2j (site-bond model  [I], Eq.(14) is exact in high dimensions. Equatiét¥) sug-
) (12) gests a simple relation betweén and pg,

-1
for the limiting case ofd—«, whereP is the cyclization Deps

probability that one end of a chain enters into the small vol- . _ .
umeu within the radius of a bond lengt around the other showing that the bond percolation threshold changes linearly
end (see Fig. 2 Our previous work is the special case of with the reciprocal of the fraction of sites, in accordance with

po=1 the observations by Agrawet al.[16] and by Stauffef15].
=1

The corresponding expression f@—o for the same Now the present result is subjected to test by simulation

R-A | of real is of the f experim_ents using the percplation the_ory. For t_his purpose,
r model of real systems is of the form Eq. (14) is computed assuming Gaussian behavioPpf

©

[Mex= 3, ¢l(--1D]/2 P= [ sipar,

(C—oe for real systems (6)  together with the average end-to-end distancg chains

Comparing Egs(12) and (6'), it turns out that there are without excluded volume effects,

substantial differences in cyclic production between the per- f 2(f—1)
)

colation model and real systems. All these arise from the fact (r?)= - nj/’z— =272 /2 (hypercubic lattices

. , . i
that the percolation clusters are fixed on lattice=e Appen-

dix B and Ref.[13(c)]) so that the intermolecular reaction
rate (B1) follows the first order ofC and has no dimension-
dependent term.

whereS; is the surface area of&dimensional spherdl(r)

the end-to-end distance distributiof,the size of a unit cell
(bond length, andn; the number of bonds constitutingja
chain. Let thej chain be comprised df sites; then one has

N o nj=j—1. Only even-numbered rings can occur for hypercu-
As the critical point is approached, the total chances olyic |attices. One has therefone=3,5,7,...,2k+1, ..., for
cyclization 2;¢; should diverge(see Appendix B so that

the site-bond threshold is given by

Percolation threshold

1 ) 20One may wish to use the exact equati®8) in place of Eq.
f-1)p for d—oo(site-bond problem (13)  (B3'), expressing the threshold equation as

° 1 (1-37a-1)P

Now we derive a more general formula for the percolation (f—=1)ps 1-37P

threshold. Simulation experiments tell us that the site-bongquation(14') slightly improves agreement with the simulation val-
percolation line is a continuous function &f; (or d). By  ues[10] compared with Eq(14).

Dco=

D.= (14')
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0.5 0.3 .
o |, d=3 H \
04 5 =3 ‘\
o & dLS 0.2 \
0.3 £

¥, / =6
D, A D,

0.2 = .
/z/'- ‘ 0.1
0.1 - P - \A
V.4 T
0 0
0 1 2 3 4 0 2 4 6 8 10 12
1 d
FIG. 3. Comparison of Eq(14) (solid lines ford=3 and 5;
broken lines ford=4 and § and simulation point§<¢, d=3; A, 0.15 :
d=4; [0, d=5; X, d=6) by Stauffer[15]. The open circlgO) is
the corresponding classical threshold H¢21); i.e., 1/5 ford 0.12
=3. \
0.09

j=4,6,8 ..., respectively. With the substitutiofr 7y =/
along with »=[f/(f—2)]n;—2(f—1)/(f—2)?, P reduces
to

Dc - Dco
Dco
/
|

0.06

1 I'(d/2,d/2v) \
P=1- r(d2) 0.03 \\%‘
wherel’(d/2,d/2v) is an incomplete gamma function defined e~
by I'(a,2)=J7t*" e 'dt. %2 4 6 § 10 1

Examples ford=3-6 computed according to the above
equations are shown in Fig. 3 against the reciprocghof
together with simulation results by Stauffef, d=3; A, (b)
d=4; O, d=5;X,d=6) [15]. The theoretical linegsolid
lines ford=3 and 5; broken lines fod=4 and 6§ are in
good conformity with the observed points by Stauffer. To
date, within our knowledge, the corresponding site-bond diawhere the theoretical line abruptly merges with the simula-
grams in higher dimensions have not been investigated, sigon line exactly atd=8, testifying that the shift from an
we cannot test Eq14) in these regimes at present. However, excluded volume to an ideal cluster is really a phase transi-
there is a reason to believe that better agreement between th@n and not an asymptotic phenomenon, consistent with the
theory and simulation experiments will be observed dor Lubensky-Isaacson predictiga7].
=8. We show below the grounds for this conjecture through
comparison with pure bond percolation simulatiopg=t1) lll. d DEPENDENCE OF CYCLIZATION

and in |Ight of the Lubensky-lsaacson excluded volume In our previous paperg]_?,] an unexpected feature of di-
theory. mensionality was disclosed for real branching reactions.
Here we shall present a more general proof.
Suppose chemical reactions in real systems, and consider
Although the outline of the examination has been reporte@ transition per unit bond formation from-1 bonds toi
in our previous paper, here we scrutinize the result in mordonds. The transition must be either an intermolecular reac-
detail. In Fig. 4a) the theoretical lingheavy ling was com- ~ tion or cyclization. Letvg be the rate of cyclization of
puted again assuming Gaussian behaviofPpfand agrees chains andv, the rate of intermolecular reaction. The cy-
remarkably well with the simulation points®) in higher  clization probability ofj chains during this small interval
dimensions, but fails in lower dimensions. The discrepancysi(=1) can be written as p{ringj}=(vg /v )/(1
amounts to= 10% in three dimensions, 6% in four dimen- +3,vg /1), and the total probability is :
sions, 3% in five dimensions, and so forth, rapidly decreas- I
ing with increasing dimension. To show up the discrepancy,
the same data are replotted in Figb@in terms of scaled o E VRJ-/VL
critical points ©O.—D.,)/D.,. Upon inspecting the magni- p{ring} = Z p{ring j}= J—, (15)
fied curves in Fig. &), we meet with the prominent feature =1 1+2 v Iy
of modern statistical physics, the marginal dimensionality, ] Rt oL

d

FIG. 4. Comparison of Eq(1l4) (heavy line,ps=1) and the
bond percolation thresholds) ¢ and(b) ¢ [10].

Comparison with pure bond percolation simulation®s=1)
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0.2 7 throughout sol reactions up to the gel point, in accordance
/ with the conjecture of most polymer chemi§is27—-29. In
0.1 3 7 consequence, we expect that, given the general solution for
0,05 A [I"], we would be able to estimate more accurately the critical
’ - point over all concentrations. Unfortunately, however, there
0.03 \ 74 does not seem to be a hope of a general solution. To date,
@; 002 only the following mathematical representation written in
0.01 \ / terms of the transition probability is known:
s v 1 ®
0.005 [F]=5fcX J p{ring j}dD. (R—Ap) (17
N j=1JD
0-0020 S 10 15 20 25 30 p{ringj} is given explicitly in Eq.(15) as the ratio of cy-
d clization rate to total reaction rate. However, so far a full

description of the rate equations has not been found. Even
FIG. 5. Dimensionality dependence of the relative cyclizationworse is that the above integral does not appear soluble even
frequencyep; [molecules/lengtt]. Calculated for a Gaussian chain. for the most elementary rate equations. Equafib® has
been solved exactly only for the limiting cases®@fx in
Experiments have shown that the intermolecular reaction rateeal systems and—« in the percolation model, to yield
follows the second order of the monomer concentration an€qgs.(6) and(12), respectivelyf13]. These circumstances led

cyclization the first order. We can thus formulate us to the technique of the perturbation expansions mentioned
in Sec. Il. As a result, whereas simple analytic formulas of
Z Bje;j/C the critical points were gained, their validity was in return

(ring} = i for real systems (16) restricted to the neighborhood of the asymptotic regimes.
panng y With this background in mind, we review the foregoing re-
1+, Bjg;/C sults.

! The only unknown quantity in the present theory is the

with B; being a function oD, but independent of the dimen- 'élative cyclization frequency, , which is correlated with
the equilibrium constant by the relatiop;/2j =K;. For

siond, and ¢; the relative cyclization frequency as defined . hai is K ¢ idel dina t
earlier. Now suppose a hypothetical dense solution where th%h?r er chainsk; ISI ”|°V.V” ? varf)_/ Wi gy_alccqr 'Rg 0
Gaussian behavior applies to branched molecules. Accordi plymer species. Calculating from first principles is there-

re not yet on a firm foundation. For this reason, whereas

to the definition.e; can be written as we have assumed the known power layej %2 for long
d (i d |92 d chains, we have made use of the experimental values for the
(sz_d,f rdl<—2> ex;{ — 5 rz)dr, _correspor_ldlng Ilnear m_olecult_as for shorter chains. This is the
1% Jo 27T<rj> 2<rj> ideal chain approximation. It is noteworthy that E8) then
. reproduces remarkably well the observed gel points in entire
which reduces to regions(Fig. 1). The discrepancy is less than a few percent,

d d d d comparable to the experimental errors mentioned in Sec. I.
$j =5 a7 d r 2 =T 52,0 This suggests that the high concentration expansion in Sec. Il

has a sound mathematical basis and that a three-dimensional

It is easy to show thap; first decreases with increasinigo branched moI_ecuIe in the con_centrat_ed sol_phase is not far
attain a minimum point, then increases indefinitely cas from a Gaussian molecule realizable in the limit@#- < or
— o (Fig. 5. Broadly speakinge; varies as~d¥? butCas  above the critical dimension. o
~const, which leads Eq(16) to p{ring}—1 and p{inter} In contrast to the situation in real systems, a distinct, large
—1—p{ring!—0, asd—=. Hence, at sufficiently high di- deviation(~10%) was found in comparison with the three-
mensions all the products should become cyclic in origin foidimensional percolation model. The discrepancy decreases
branching reactions in real systems. with increasing dimension, and disappears suddenly in eight
An important feature is that the dimensionality is closelydimensions(Fig. 4). Equation(14) is thus exact ford=8,
connected with cyclization. This feature does not appear t&nuch larger than the case in real systems. .
have been fully recognized up to the present. The reason The difference between real systems and the percolation
simply comes from the fact that the occurrence of rings/Model is comprehensible in light of the excluded volume
together with excluded volume effects, has often been igtheory [17]: According to the Lubensky-Isaacson theory, a
nored for the sake of mathematical simplicity in the theory ofPranched molecule in a monodispersed melt should have the
gelation. It is therefore not surprising that the unexpectedtitical dimensiord.=4, above which Gaussian behavior ap-

dimension dependence of real systems has not been realizBtes, whereas a branched molecule in the dilution limit has
so far. d.=8. The latter critical dimensiond;=8) is exactly equal

to the value predicted for a percolation cluster in the sol
phasd15,30. For the present case, the critical dimension of
d.=8 applies, sinc®; depends on the frequency of cycliza-
The examinations in Sec. Il support the mathematication in the sol phase up to the gel point. In the percolation
soundness of the present theory, which in turn means that theodel, our world {=3) is farther away from the critical
shift of D, is caused by the waste of FU’s due to cyclizationdimension (.= 8) than is the cased(<8) of real branch-

IV. DISCUSSION
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ing reactions. This is the reason for the remarkable agreewherel’ is a coefficient.

ment between the theory and experiments in real gelations Then we proceed to calculation of the cyclization rate.

([13(@)]; Fig. 1 and the large deviation in the percolation The cyclization rateij of j chains is in proportion to the

model in low dimensiongFigs. 3 and 4 cyclization probability? multiplied by the total numbed;
Finally, we would like to mention that the present theory of chances of cyclization:

is in harmony with recent work based on physical ap-

proacheg§10-12,31. Now we restrict our arguments to the VR X PX ¢;.

critical dimension .= 8) or higher. Then the threshold, Eq. :

(14), is determinable by two parametefgg in the notation P is the quantity defined in the texSec. 11 D).

of [10]) andd, in accordance with the Galam and Mauger The total numbegp; of chances of cyclization fgrchains

work (note thatn; in P disappears by summatipiWe see, can be estimated as follows. Supposenarree that had

on the other hand, that E¢l4) includes a hidden variable, reacted FU'sm unreacted FU’s, and dead ends in the first

the cyclization probabilityP=1—-1'(d/2,d/2v)/T'(d/2) that generation. Then,+ m+n=f, which follows the trinomial

varies widely depending on lattice type, in accordance withdistribution[32]:

the van der Marck conjectufd.1].

[psD+ps(l_D)+1_ps]f

V. CONCLUDING REMARKS -

fof
=2 2 i (D) [p<(1-D)1™(1-p)"

(1) The analytic expressio(B) for the gel point was re-
examined with gelation experiments on nonstoichiometric
systems by Gordon and Scantleb(iBj, showing excellent Let N(A); be the number of FU’s in thgth generation. It is
agreement between theory and experiment in every regioglear that
examined, which has again confirmed the mathematical
soundness of the present theory.

(2) We have presented E@L4) which predicts the bond
percolation threshold. The theory is exact above eight dime
sions, suggesting the critical dimensidg= 8 for sol clusters
on lattices, consistent with the Lubensky-Isaacson excluded N(A),=1(f—1)ps
volume theory.

N(A),=I.

Each individual FU createsf ¢ 1)ps new FU’s on average.
NS0 the number of FU’s in the second generation is

and
APPENDIX A: EXPANSION METHOD N(A)j =(f— 1)psDN(A)j .
Differentiate Eq.(7) with respect tdD.=D_, to yield =[(f—1)pD]"2N(A),
s :
1 (2j—-1)! The total number of chances of cyclization fochains is
(n) - [P
Z"p == D" 2 ij—nmr (Al)  calculated via

fof-1
Now suppose a special situation where a branched molecule ¢-:EM D 2 2 m f!
is Gaussian so thap;=j %2 Then it is obvious that the 5 7= I'min!
right hand side of Eq(A1) diverges fom=1, if d<2. Thus, | n N
the expansion methd@nd therefore Eq¢8) and(14) in the X(psD)'[ps(1—D)]™(1—ps)"N(A);(1-D),
text] applies ford=3.

which results in

APPENDIX B: CYCLIC DISTRIBUTION IN SITE-BOND ¢j=% Mopgf(f—l)(l— D)Z[(f— 1)pSD]i_l_
PERCOLATION
. . - , ) . Then we turn attention to the self-avoiding walk for a
Consider a lattice of sufficiently large size and high di- jaice chain. Aftef steps, let one end enter into the volume
mensionL®(L andd— ) so that clusters can be ideal. Let | o.0ind the other end; more exactly, on any one of the
the probability of a given site being a monomer molecule b&,eighhoringf sites. Because of excluded volume effects, im-
ps. The intermolecular reaction ratg can be equated to the ediate reversals are forbidden for the end; so there exist
product of the probability of a given functional unit on a (f—1)p, possible pathgFU’s) for another step. The prob-

cluster entering into a small volume with the radius of a ability of these paths being vacafunreactelis 1—D. The
bond lengthy” around a FU on the other cluster, and the totalisial number of paths available for the end is therefdre (

number of all pair§we put/ as the size of the unit cgllFor  _ 1)py(1—D). Of these only one path can lead to the other

the present case, molecules are fixed on lattices, and each Rilq "thys the probability of the two ends closing in a ring
has a single chance to react, so that it can react with thg{%n be written

nearest neighbor alone, which is always unreacted because o
the lattice specificity. Thus, the intermolecular reaction rate P

is simply Pcyzm,

v =31"fMop3(1-D)X1, (B1)  whence the cyclization rate can be formulated as
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VR]-ZI,(W){% Mop3f(f—1)
X(1-D)?(f-1)psD] "1} (B2)
The relative rate therefore becomes
VR -1
—L=7’[(f—1)psD]' :

14

Recall thatP is a monotonically decreasing function @fso
that the transition probability, Eq15), reduces to

p{ring j}—ij/vL for d—oo.

The transition probability is equivalent to the number frac-

tion of rings, and one has viéi =% fMyp2sD

- fps

5[F]dﬁm= 52]: NRJ- /V: m

XCY, Pl(f-1)ps]'D!~*6D.
J
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Now integrate the above differential with respecthipand
one arrives at the asymptotic solution of the ring distribution

function for the site-bond problem:

f - .
[T14w=—+—Cps> PL(f—1)pDI/2j. (B3
(f—1) ]

Sincef is an increasing function o, the prefactor may be
approximated as

=1 for large f.

(f—=1)

Then Eq.(B3) reduces to

[F]MECps; PL(f-1)psD1//2j. (B3)
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